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We consider  the propagation of waves in an elast ic  medium whose la teral  surface is in contact with a 
nondeformable rough body. Slippage at the boundary may occur ,  giving r ise  to Coulomb frictional forces  
proport ional  to the normal  s t r e ss  in the wave. We show that when the coefficient of fr ict ion is small  an 
equation of the following type is applicable: 

0 = % exp  ( - -  6x) s in  (cot  - -  k x )  

The absorpt ion coefficient is a constant quantity, inverse ly  proportional to the t r ansverse  rod dimension L, 
a is the s t r e s s ,  w is the c i r cu la r  frequency, and k is the wave number.  

It is known f rom exper iment  [1] that the sound absorption coefficient in rocks is proportional to the 
frequency.  This type of damping matches the wave damping in the medium we consider  here ,  where the 
t r ansve r se  dimensions are  proportional to the wave length. We can, proceeding f rom this observation,  ex- 
plain our observed absorption law by assuming  that in a given rock mater ia l ,  which ordinar i ly  consists  of 
granules  and sheaves of various dimensions,  waves of various lengths st imulate the appearance of friction 
on sur faces  separated f rom one another by a distance proportional  to the wave length. 

A point of view different f rom ours was presented in [2-4] in connection with the propagation of 
waves in an unbounded elast ic medium whose proper t ies  exhibited frictional effects .  

The problem considered in [5, 6] concerned waves in an elast ic  rod in which the frict ional forces  
were independent of wave amplitude. In this s tatement  of the problem waves of sufficiently small  amplitude 
propagate without damping. 

1 .  D e r i v a t i o n  o f  E q u a t i o n s  

We consider  a semiinfinite rod, placed along the x axis and surrounded by an incompress ible  medium. 
The equation of motion, which takes into account  frict ion on the la teral  surface of the rod, has the form 

Ov 06 
p S  "-Ti-" = S ~ -l- zP  

(1.1) 

Here p is the density, v is the speed, ~ is the normal  s t ress ,  P and S are ,  respect ively ,  pe r imete r  
and a rea  of a c ross  section, and "r is the tangential s t r e s s ,  directed along the x axis and acting on the lat-  
eral  surface of the rod. 

We assume that the quantity z is proportional to the s t r e ss  an acting on the surface of contact and 
directed opposite to the speed of displacement  

"r = -- 11 ~. I sign~ v (1.2) 

v = Ou/Ot (1.3) 

Here f is the coefficient of friction and u is the displacement .  
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For an elast ic rod we obtain, upon noting that deformations in the t r ansver se  direction are zero,  

Ou c~= .  ~--,~ E (1.4) 
= P c ~ '  (1+ v) (t -- 2v) p 

( 1 . 5 )  5n t - - v  ~ 

Here E is Young's modulus and v is Poisson ' s  rat io.  

Eliminating the displacement  f rom Eqs.  (1.1)-(105), we obtain a sys tem of two equations of hyperbolic 
type for the s t r e s s  and hie speed 

a .  oz - -  26 [ z [ s i g n  v,  26 = 
P at  0x ~--- 

a~ 0v 
at pc 2 ~ ---- 0 

v p] 
(1.6) 

(1.7) 

For the displacement  this sys tem is reduced to a single second o rde r  equation 

at'- c ~ = - - 2 6 c  ~ \ a t /  

In hhe model we consider  here  fr ict ion appears  only on the right side of the resul t ing equations and 
does not a l te r  their  hyperbolic  nature.  The slope of the charac te r i s t i cs  stays constant  and does not depend 
on the unknown quantities (if we consider  a s imi la r  problem in a nonhomogeneous medium, for example,  
one where the sound speed depends on x, then the slope will change in accordance  with changes in the p r o p -  
e r t i es  of the medium; however,  as before ,  it will not depend on the unknown functions). 

The right side of the equations contains a nonlinear "sign" term.  This nonlineari ty involves a depen- 
dence on the sign of the speed and the presence  of the absolute value of the s t r e s s .  It is related to the in- 
troduction of the "dry" fr ict ion law in the form (1.2). 

Equation (1.2) signifies the presence  of the frict ion in both compress ive  and tensile phases. If we 
were to consider  waves in a solid rod surrounded by a rigid medium, then in the tensile phase there would 
be a withdrawal f rom the wall and a corresponding absence of fr ict ion.  As a resu l t  we would have a de- 
c rease  in the amplitude only in the compress ive  phase. If, however,  the rod were hollow and the incom- 
press ible  medium occupied only its in ter ior ,  then the amplitude decrease  would be observed only in the 
tensile phase. 

In addition to this, the compress ive  and tensile phases in such rods must  propagate with different 
speeds.  

An identical amplitude decrease  in the compress ive  and tensile phases may be observed,  for example,  
in connection with wave propagation in a thin tube in which the outer and inner pe r ime te r s  are approximately  
equal. In this case,  fr ict ion occurs  at  the outer surface in the compress ive  phase and at  the inner surface 
in hie tensile phase. Frict ion also occurs  in both phases in a solid rod, one portion of whose la tera l  surface 
is convex and the other portion concave.  

We now make some r e m a r k s  on the application of Eqs. (1.4) and (1.5). We assume here that the rod 
deforms uniformly over  its c ro s s  section.  When tangential surface forces are  present ,  this will be valid if 
the wave lengths )~ in question are  much l a rge r  than the t r ansverse  rod dimension 

L/~ ~ t, L = S I P  (1.9) 

In concluding our analysis  of the sys tem of Eqs. (1.6) and (1.7), we obtain an equation for energy 
variat ion in the wave, We multiply Eq. (1.6) by v. After simple manipulations and the use of Eq. (1.7), we 
obtain 

a (_~_ ~'- ) 3(~v) 261~v] (1.10) 0"7 + ~ ax 

We integrate Eq. (1.10) throughout the volume of the body in which the wave is propagating. Then the 
f i r s t  t e rm on the r ight  side vanishes.  We obtain 
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at \ 2 + 2 - ~ ' )  = -- 251 :v ] (1.11) 

Here the angular brackets  denote averaging with respec t  to volume. In the left member  of this equa- 
tion we have the change of energy in the wave per unit volume. The negative quantity in the r ight member  
is the work of the friction forces  per  unit Lime. Owing to friction the energy in the wave decreases .  

2 .  A p p r o x i m a t e  S o l u t i o n  

In [7] K. E, Gubkin proposed a method for finding an approximate solution for weak shock waves of 
smal l  wave length. This method is based on an approximate integration of the equations along the charac-  
t e r i s t i cs .  We apply a s imi la r  method here  for integrating Eqs.  (1.6) and (1.7). As a small  pa ramete r  here  
we take not the wave length but the coefficient of fr ict ion.  

We write Eqs.  (1.6) and (1.7) along the cha rac te r i s t i c s  C+ and C : 

dx 
dt ---- c, d :  ~ p c d v  ---- 25 sign (~u)$dx (2.1) 

dx 
d-"F = - -  c, d~ ~ p c d v  = 25 sign (~v) ~dx  (2.2) 

We consider  a wave consist ing of n oscil lat ions,  each of length ~, propagating through an unperturbed 
homogeneous medium. The speed of the leading wave front is equal to c and the coordinate of this front 
is xi (t). We integrate the second relation (2.2) along the direction of the C_ charac te r i s t i c ,  defined by the 
f i r s t  of Eqs. (2.2) 

x~-n~, 

~- pcv  = 28 ~ sign (~v) ~d x  (2.3) (5 

xl 

We est imate  the magnitude of the integral  according to the mean value of its integrand. When the 
frict ion is small  this integral  can be neglected. We obtain 

a +  p cv  = O (2.4) 

Here we have used the condition that the wave is propagating with respec t  to the unperturbed medium, 
i .e. ,  a = v = 0  f o r x  > xl. 

We can est imate the applicability of Eq. (2.4) as follows: 

2 n S k ~ i  or / . ~  4an (i -- v) L (2.5) 
v 

The longer the wave train in question the smal le r  must  be the coefficient of fr ict ion for the same de- 
gree of approximation,  

Comparing the relat ions (2.5) and (1.9), we conclude that the fr ict ional  constraint  is fair ly s trong.  
We therefore make some num~erical es t imates .  

We take the quantity L/~ equal to 0.05. In addition we assume the condition (1.9) to be satisfied. 
When the Poisson ratio is taken equal to 0.3, the right side of the second of the inequalities (2.5) is equal 
to 1.5. Consequently, a fr ict ion coefficient of 0.1 or  less will sat isfy the necessa ry  res t r ic t ions  with ac- 
Ceptable accuracy .  

Using Eq. (2.4), we integrate Eqs. {2.1) along the C+ charac te r i s t i c s  

x = c t  ~- a, ~ = ~o (a) exp (-- ax) (2.6) 

Here a and a0 (a) are  quantities which are  constant along a C+ charac te r i s t i c  but have other values 
along the other  C+ charac te r i s t i c s .  These values are  determined f rom the initial conditions. 

For  example,  when x = 0 let the s t ress - t ime  dependence be given by 

I~--o = ~o (t) ( 2 . 7 )  

For this case the solution of Eq. (2.6)has the form 

a = ao( t  - -  x / c )  exp (-- 6x) (2.8) 
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All parts of the wave, regardless of their shapes, decay according to the same exponential relation- 
ship. For harmonic oscillations the damping is independent of the frequency, being determined merely by 
the distance traversed by the wave. 
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